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1. Introduction

This paper examines a new class of superconformal field theories in three dimensions that
was recently discovered by Aharony, Bergman, Jafferis, and Maldacena (ABJM) [fl]. These
theories are superconformal Chern-Simons gauge theories with A/ = 6 supersymmetry.
When the gauge group is chosen to be U(N) x U(N) and the Chern-Simons level is k,
these theories are conjectured to be dual to M-theory on AdSy x S7/Z; with N units of
flux. More precisely, this is the appropriate dual description for N 1/5 > k. In the opposite
limit, NV/® <« k < N, a dual description in terms of type IIA string theory on AdSy x CP3
is more appropriate. A large-N expansion for fixed 't Hooft parameter A\ = N/k can be
defined. These developments raise the hope that this duality can be analyzed in the same
level of detail as has been done for the duality between N' = 4 super Yang-Mills theory
with a U(N) gauge group in four dimensions and type IIB superstring theory on AdSs x S°
with N units of flux.

Even though the ABJM paper is very recent, quite a few papers have already appeared
that examine various of its properties as well as possible generalizations. Among the first
are [B-[L5). New superconformal Chern-Simons theories with A" = 5 supersymmetry have
been constructed in [[[1]]. (This paper also does many other things.) Certain of these N' =5
theories should be dual to the Dy o orbifolds described in [[J. Also, in a very interesting
recent paper [[[J], Bagger and Lambert show that the ABJM theories correspond to a class
of 3-algebras in which the bracket [T'®, T, T] is no longer antisymmetric in all three indices.
The actions and supersymmetry transformations that are derived in [[[1], [J] appear to be
equivalent to the actions and supersymmetry transformations that are obtained in this
paper (without reference to 3-algebras).

The three-dimensional superconformal field theories of coincident M2-branes were ini-
tially defined as infrared fixed points of super Yang-Mills theories, i.e., as limits of the
form gym — oo. In [If] it was proposed that these fixed points could be reformulated



in a more useful dual formulation analogous to a Seiberg dual. It was suggested that the
theory would be a gauge theory in which the gauge fields couple to dimension-1/2 scalar
and dimension-1 spinor fields. Since all terms should be dimension 3, there should be no
dimension-4 F? kinetic terms, but dimension-3 Chern-Simons terms would be allowed. An
approach to constructing such theories based on considering multiple M2-branes ending on
an Mb5-brane was proposed in [[I7]. Several years later, a specific example of such a super-
conformal Chern-Simons theory with maximal (N = 8) supersymmetry was constructed by
Bagger and Lambert [[§ R0 and by Gustavsson [R1, RJ. This theory is parity conserving
and has SO(4) = SU(2) x SU(2) gauge symmetry [RJ, 4]. The scalars and spinors are
4-vectors of SO(4), or (equivalently) bifundamentals of SU(2) x SU(2).

The BLG theory was conjectured 2J] and proved [F, to be the unique theory of this
type with maximal supersymmetry. (Generalizations based on Lorentzian 3-algebras [27—
P9 turned out to be equivalent to the original super Yang-Mills theories once the ghosts
were eliminated [BQ—BJ.) This left the possibility of considering theories with reduced
supersymmetry. A large class of superconformal Chern-Simons theories with A/ = 4 super-
symmetry was constructed by Gaiotto and Witten [BJ. This was generalized to include
twisted hypermultiplets in [[[1], B4]. This generalization includes the Bagger-Lambert the-
ory as a special case. Moreover, all the ABJM theories turn out to be special cases of the
generalized Gaiotto-Witten theories in which the supersymmetry is enhanced to NV = 6.
The dual M-theory picture requires that for levels £ = 1,2 the ABJM theories should have
N = 8 supersymmetry. However, this has not yet been demonstrated explicitly.

The purpose of this paper is to recast the ABJM theory in a form for which the
SU(4) R-symmetry of the action and the supersymmetry transformations is manifest and
to use this form to study some of its properties. The existence of such formulas is a
consequence of what was found in [[l]. We also verify the conformal supersymmetry of
the action, which is not a logical consequence of previous results. Since this symmetry
is a necessary requirement for the validity of the proposed duality, its verification can be
viewed as an important and nontrivial test of the duality. We also recast the potential,
which is sixth order in the scalar fields, in a new form.! This new form should be useful for
studying the moduli space of supersymmetric vacua of the theory, as well as the vacuum
structure of various deformations of the ABJM theory. Although we discuss the gauge
group U(N) x U(NV), all of our analysis also holds for the straightforward generalization to
U(M) x U(N).

Some of our results are new and others confirm results that have been obtained pre-
viously. The ABJM theories were formulated in [[] using auxiliary fields associated with
N = 2 superfields. In this formulation only an SU(2) x SU(2) subgroup of the SU(4) R-
symmetry is manifest, though the full SU(4) symmetry has been deduced. In addition, [I]
deduced a manifestly SU(4) invariant form of the scalar field potential, which is sixth order
in the scalar fields. The quartic interaction terms that have two scalar and two spinor fields
were also recast in an SU(4) covariant form in [B]. Our results are in agreement with both
of these.

LA similar formula also appears in [@]



2. The U(1) x U(1) theory

The field content of ABJM theories consists of scalars, spinors, and gauge fields. The
U(1) x U(1) theory has fewer indices to keep track of, and it is quite a bit simpler, than
the full U(NV) x U(V) theory; so it is a good place to start.

There are four complex scalars X4 and their adjoints X4. (We choose not to use
adjoint or complex conjugation symbols to keep the notation from becoming too cumber-
some.) A lower index labels the 4 representation of the global SU(4) R-symmetry and an
upper index labels the complex-conjugate 4 representation.

Similarly, the fermi fields are ¥4 and W4. These are also two-component spinors,
though that index is not displayed. As usual, the notation U4 or ¥, implies transposing
the spinor index and right multiplication by 4°. Note, however, that for our definition
there is no additional complex conjugation, so in all cases a lower index indicates a 4
and an upper index indicates a 4. With these conventions various identities that hold for
Majorana spinors can be used for these spinors, as well, even though they are complex
(Dirac). For example, AWy = U ¥4, The 2 x 2 Dirac matrices satisfy {y#,7"} = 2.
The index p = 0, 1,2 is a 3-dimensional Lorentz index, and the signature is (—, +,4+). It is
convenient to use a Majorana representation, which implies that v* is real. We also choose

A — A In particular, this means that v99'4% = 1. For

example, one could choose Y = io?, 4! = ¢!, and 72 = o3.
The U(1) gauge fields are denoted A,, and Au- The fields X 4 and ¥4 have U(1) charges

(+, —), while their adjoints have charges (—,+). Thus, for example,

a representation for which ~y

DMXA = 8;¢XA + i(Au — AM)XA- (2.1)

and
D, X4 =09, X4 —i(A, — A,) XA (2.2)

We choose to normalize fields so that the level-k Lagrangian is k times the level-1
Lagrangian. With this convention, the N = 1 action is

k _ 1 .
§=5 / &Pz <—D“XAD“XA +i0 4" D, U 4 55“”A(AH8,,AA — Aua,,AA)> . (23)

The claim is that this action describes an N' = 6 superconformal theory with OSp(6]4)
superconformal symmetry. The R-symmetry is Spin(6) = SU(4) and the conformal sym-
metry is Sp(4) = Spin(3,2). The supercharges transform as the 6 representation of SU(4).
Both the Poincaré and conformal supercharges are 6-vectors. Each accounts for 12 of the
24 fermionic generators of the superconformal algebra.

The antisymmetric product of two 4s gives a 6. The invariant tensor (or Clebsch-
Gordan coefficients) describing this is denoted I’ {4 B= —I‘IB 4» since these can be interpreted
as six matrices satisfying a Clifford algebra. More precisely, if one also defines I'! = (rHt,
or in components

~ 1 *
P8 = LABCDLL (1) 2.4)



then?
ey + /1! = 2617, (2.5)

Note that v# are 2 x 2 matrices and I'! are 4 x 4 matrices. They act on different vector
spaces, and therefore they trivially commute with one another.
The supersymmetry transformations of the matter fields are

6X 4 = il 0Pl (2.6)
5Wy = Thpye' D, XP (2.7)

and their adjoints, which are
6XA = —iTIABg gel (2.8)
§UA = —TIAByuI D X, (2.9)

For the gauge fields we have
6A, = 6A, = —TL 0% I XP - TIABY 4y el Xp. (2.10)

The verification that these leave the action invariant is given in the appendix.
Note that the covariant derivatives only involve A_, where

AL =A+A. (2.11)

Therefore, let us rewrite the Chern-Simons terms using [Bj
/(A/\dA—fl/\d/l):/AJr/\dA_:/A_/\dA+. (2.12)

Since this is the only appearance of A, in the action, it can be integrated out to give the
delta functional constraint
F_=dA_=0. (2.13)

The A_ equation of motion, on the other hand, just identifies F with the dual of the
charge current. Since the kinetic terms are defined with a flat connection A_, this is just
a free theory when the topology is trivial, which is the case for £ = 1. Then this theory
has A/ = 8 superconformal symmetry.

ABJM proposes to treat F as an independent variable and to add a Lagrange multi-
plier term to ensure that Fy is a curl

1
r= TeM A9, Fyadix. (2.14)
Then the quantization condition on F requires that 7 has period 2w. They then explain
that after gauge fixing 7 = 0 one is left with a residual Z; gauge symmetry under which

XA — exp(27i/k) X4 and similarly for ¥ 4. Thus one is left with a sigma model on C*/Z.

2 An explicit realization in terms of Pauli matrices is given by I'! =ioo ® 1, I? = 02 ® 01, I'® = 02 Q 03,
F4 =1® o2, s =101 ® 02, FG =103 ® 02.



This breaks the supersymmetry from N' = 8 to N/ = 6 for k > 2. The reason for this is
that the 8-component Spin(8) supercharge decomposes with respect to the SU(4) x U(1)
subgroup as 69+ 12+ 1_2. Because of their U(1) charges, the singlets transform under a Zj,
transformation as @) — exp(+4mi/k)Q. Therefore two of the supersymmetries are broken
for k > 2.

This analysis of the U(1) factors continues to apply in the U(N) x U(NN) theories with
N > 1. The Bagger-Lambert theory corresponds to the gauge group SU(2) x SU(2). Since
it has no U(1) factors, no discrete Z gauge symmetry arises, and this theory has N' = 8
superconformal symmetry for all values of k. So, it is different from the U(2) x U(2) ABJM
theory, and its interpretation in terms of branes or geometry (see [Bd, B7)) must also be
different.

3. The U(NN) X U(NN) theory

The field content of the U(N) x U(N) ABJM theory consists of four N x N matrices of
complex scalars (X 4)% and their adjoints (X4)?,. These transform as (N,N) and (N, N)
representations of the gauge group, respectively. Similarly, the spinor fields are matrices
(T4, and their adjoints (¥ 4)%,. The U(N) gauge fields are hermitian matrices A%, and
fl%. In matrix notation, the covariant derivatives are

DX =0,Xa+i(A,Xa— XaA,) (3.1)
and
D, X4 =9, X4 +i(A, X" - X*4,) (3.2)
with similar formulas for the spinors. Infinitesimal gauge transformations are given by
0A, = DA = 0,A +i[A,, Al (3.3)
5A, = DA =0,A +i[A,, Al
0X4 = —iAXa +iX4A,
The action consists of terms that are straightforward generalizations of those of the

U(1) x U(1) theory, as well as new interaction terms that vanish for N = 1. The kinetic
and Chern-Simons terms are

k _
Sicin = 5 - / d*v tr (~D'XAD, X4 + iU sy"D,U4) . (3.6)
and
E [ s (] i P
Sos = 5= [ d'xe tr(aA“&,A)\ + A A AN — S A0, A, gAuA,,AA). (3.7)

Additional interaction terms of the schematic form X2?W¥? and X remain to be determined.
These terms are not required to deduce the equations of motion of the gauge fields, which
are

1 X 1 s -
Jh= e By = o, (3.8)



where

JE =X DFXA — iDFX XA — Oy, (3.9)
and

JP = iXADHX 4 — iDFXAX ) — Ty 04, (3.10)

Note that in the special case of U(1) x U(1) one has J* = —J#, and hence the equations
of motion imply F),, = Fj,,.
In matrix notation, the supersymmetry transformations of the matter fields are

60X 4 =il pel vB (3.11)
and
6Uy = —Thpe' "D, X5 + 65304 (3.12)
or equivalently
6U 4 =T py#e! D, XE 4 530 4. (3.13)
and their adjoints, which are
OXA = —iITABg gl (3.14)
and
504 = _TIAByrI D X 4 5304 (3.15)
or equivalently
SUA =TIABEIA D X + 6304 (3.16)

The terms denoted d3 are cubic in X and are given below. The supersymmetry transfor-
mations of the gauge fields are

6A, = Tl pely, VAXP —TIABX 5 4y,ef (3.17)
6A, = L pXBly, wA —TIABY 1y el X 5. (3.18)

Note that dA, # 514” for N > 1. They are matrices in different spaces.
In the appendix we show that supersymmetry requires the choice

6304 = NTAL 530 4 = N4eL, (3.19)
where
NIA =TIAB(Xo XOXp — XpX9Xo) — 2B X p X4 X 0. (3.20)
and
N = (N =L (X9 X XB — XBXoXxC) — 2L XBx, XC. (3.21)

Note that these expressions vanish when the matrices X4 (and their adjoints X,) are
diagonal.
All the possible structures for the ¥2X? terms are

Lya = ieBPtr(U 4 XpUeXp) — icapoptr(PAXPUCOXD) (3.22)
Ly, = itr(UAW 4 XpXB) —itr (U, 04X B Xp) (3.23)
Lye = 2itr(U 0B XA X p) — 2itr (W0, XpX4) (3.24)



The coefficients are chosen so that Ly = L4y + Lay, + L4c is the correct result required by
supersymmetry, as is demonstrated in the appendix.

The lagrangian also contains a term Lg = —V that is sixth order in the scalar fields.
The scalar potential V is expected to be nonnegative and to vanish for a supersymmetric
vacuum. An SU(4) covariant formula for V in terms of the fields X“ and X4 has been

given in [f}, ]
1
V= —3tr [XAXAXBXBXCXC + XA XA XpXBXoXC (3.25)
+AX A XBX e XAXpXC — 6XAXBXBXAXCXC] ,

a result that we confirm in the appendix.

This formula for V' is not expressed as a sum of squares, which makes it inconvenient for
determining the extrema. For a supersymmetric vacuum, 6¥4 = §¥ 4 = 0. In particular,
for a solution in which the scalar fields X# and X4 are constant, and the gauge fields
vanish, the variations 8304 and 83¥ 4 should vanish. This implies that N IA — 0 and
N = (N1 = 0. The way to ensure these requirements, as well as manifest SU(4)
symmetry, is for the potential to take the form

1
V= Etr(NfANj). (3.26)
The definitions of N4 and N 1 are given in eqs. (§:20) and (B21)). It is straightforward
to verify the equivalence of egs. (B.23) and (B.24) for this choice of the coefficient by using

the key identity

Il g0 = 9550, (3.27)

The indicated relationship between the potential and 63V in eq. (B.26) should be quite
general in theories of this type. As has already been noted, N4 and N j{x vanish when the
scalar fields are diagonal matrices. To get the expected moduli space, these should be the
only choices for which they vanish (modulo gauge transformations).

4. Conclusion

The study of ABJM theories has become a hot topic. The technology that has been devel-
oped in the study of the duality between four-dimensional superconformal gauge theories
and AdSs vacua of type IIB superstring theory can now be adapted to a new setting. It
should now be possible to study the duality between three-dimensional superconformal
Chern-Simon theories and AdS4 vacua of type ITA superstring theory and M-theory. A
great deal should be learned in the process, and there may even be applications to other
areas of physics.

Our contribution to this subject is modest: We have verified the Poincaré supersym-
metries of the ABJM theory in a formalism with manifest SU(4) symmetry. The action
that we obtained agrees with results given in [fl, B, [3]. We have also verified by explicit
calculation that this action has the conformal supersymmetries that are required by the
proposed duality. Since this is not implied by any previous calculations, it is an important



(and nontrivial) test of the duality. Taken together with the Poincaré supersymmetries,
this implies the full OSp(6]4) superconformal symmetry of the action. We have also recast

(]

the sextic potential as a sum of squares in eq. (B.2(), a form that should prove useful in
future studies.
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A. Verification of superconformal symmetry

The U(1) X U(1) theory. Let us check the supersymmetry of the U(1) x U(1) theory.
We only analyze half of the terms, since the other half are just their adjoints. Omitting
the factor of k/2m, the variation of the Lagrangian contains (dropping total derivatives)

Ay = —D'XAD,6X 4 = iD*X AT, 0P (A1)
and

Ay = iU 4y - DTA
= il zely - DXBr . DUA (A.2)
1 .
= il e D2 XBuA — §r§1 BENPH(Fpy — Fp) XPUA, (A.3)

Note that the gauge fields only appear in the covariant derivatives in the combination A—A,
which has a vanishing supersymmetry variation. The variation of the Chern-Simons term,
using the first term in eq. (2:10), contributes

1 .
As = 55“”A§IW\I/APQBXB(F,,,\ —F)). (A.4)

Using E“VA"}/M = 4"}, we see that A; + Ay + Az = 0. The other half of the terms in
the variation of the action, which are the adjoints of the ones considered here, cancel in
the same way. The conserved supersymmetry current can be computed by the standard
Noether procedure. This gives (aside from an arbitrary normalization)

QL =Thpy DXy, 0P —T148y . DX v, Vp. (A.5)

One can check this result by computing the divergence. This vanishes as a consequence of
the equations of motion v - D¥P =0, D - DX4 =0, and F, — F/w =0.

Let us now explore the conformal supersymmetry, with an infinitesimal spinor param-
eter !, using the method explained in [R3]. As a first try, consider replacing ! by v - zn!
in the preceding equations, since this has the correct dimensions. Using 0,e(x) = v,n and



YHyPyu = —~P, this gives a variation of the action that almost cancels, except for a couple
of terms. These remaining terms can be canceled by including an additional variation of
the spinor fields. It has the form

e LD R FES SN (A.6)
Correspondingly, the conserved superconformal current is
Sp =7 w Q)+ TypX Ay, 08 — TP X4, U, (A7)

As a check, one can compute the divergence using the conservation of Qﬁ and the spinor
field equation of motion

8“5,1; — ’Y”Q,i +F{43’Y .DXAYB _ fIAB,Y DXV = 0. (A.8)

The various bosonic OSp(6]|4) symmetry transformations are obtained by commuting
¢ and 7 transformations. Of these only the conformal transformation, obtained as the com-
mutator of two n transformations, is not a manifest symmetry of the action. It is often true
that scale invariance implies conformal symmetry. However, this is not a general theorem,
so it is a good idea to check the conformal symmetry (or the conformal supersymmetry)
explicitly.

The U(NN)XU(N) theory. Let us now examine the supersymmetry of the U(N)xU(NV)
theory. Some of the terms are simple generalizations of those examined in the NV =1 case
and will not be described here. Rather, we focus on those that only arise for N > 1. We
will first determine the quartic ¥2X? term (called L4) in the action by requiring that the
variation of its X fields cancels the terms that arise from varying the gauge fields in the
spinor kinetic term. Since these terms are cubic in W, various Fierz identities are required.
The second step is to determine the variation d3W by requiring that this variation of the
spinor kinetic term cancels against the lowest-order variation of the W fields in Ly and
the variation of the gauge fields in the scalar kinetic term. The third and final step is to
determine Lg by arranging that its variation cancels against the d3¥ variation of L4. After
this has been completed, we verify the conformal supersymmetry.

Determination of L4. A wuseful identity involving four two-component Majorana
spinors, obtained by a Fierz transformation, is

V1yuthahsyte = —2801a1s — Pripagis. (A.9)
Juggling the indices this can be recast in the form
Evu1 by s = — 201983 — E1ihats. (A.10)

These will be useful for eliminating Dirac matrices from equations that arise later. As
written, these relations preserve the 123 sequence of the spinors, which is convenient if they
are matrices that are to be multiplied. However, the right-hand sides can be rewritten in
other ways without Dirac matrices using the relation

V1hoths + hotdsihr + P3thiis = 0. (A.11)



This equation will also be useful.
Varying the gauge fields in the spinor kinetic term of the U(N)xU(N) theory (dropping
a factor of k/2m) gives
tr (\if A (—0A, T4 + \IanAM)) . (A.12)
Keeping only the terms with two superscripts on spinor fields, since the other terms are
just their adjoints, leaves
Thotr(— WAt U, OBy el X 4 eyt P 4y, 04 X0, (A.13)
Inserting the identities above, so as to eliminate Dirac matrices while retaining the order
of the matrices, which are implicitly multiplied, leaves
L tr (25’ TAY B XC 4 TAD 4 OB XC 20 B Y 42l wAXC g B, 04 XC )
— itr(BAW A0 X g X B) —itr (U o UAX Bo X g) +- 2T L o tr (BT AW , U B XC - XOTBw y)).
Now consider varying the X fields in the second term in Ly,. This gives
—ZiEABCDtr(\IfA(sXB\I’CXD) = —ZfIBEeABCDtr(\IJAEI\IJE\I’CXD)
= PP ypepT et (WA U B0 X P)
= 6EESTL (DA W pwC X D)
= OFESTL tr(UAW el WO XD 4 04l w p0¢ X P)
= —2itr (VAW 46X p X P) + 2itr (W40 X B X p)
+2itr(BAU g0 X 4 X B) — 2itr (D, 0B XA6X )
—oT L tr (AW, 0P XC — XOTPW ),
where we have used eq. ([A.11). Here we have used the definition
SREE = 651055 sE]. (A.14)
These two sets of terms combine to leave
—itr(UAW 46X p X P) +itr(D 04 XP5X )
+2itr (BB W 16 X p X4 — 2itr (V0B XA6X ).
These terms are canceled in turn by varying Xp in L4, and L4.. Thus, terms of this
structure in the supersymmetry transformations cancel for the choice of L4 given in section
3. The adjoint terms cancel in the same way.
Since we now have the complete dependence of the action on spinor fields, we can
deduce the spinor field equations of motion. They are
v DUA = —2eABCD X o X — XpX B4 + vAXB X,
—20BxAXp + 2Xp XA WP (A.15)

and its adjoint

v -DU 4 = 2e4cp XBUCXP 4 XBXpU, — Uy XpXB
+2Up XA XP —2XBX,Up. (A.16)

— 10 —



Determination of d3W¥. Having determined L4, we are now in a position to
determine d3¥ by computing terms of the schematic structure tr(¥,4DXpX °x D),
tr(U4XpDX®Xp), and tr(¥4XpX“DXp) that arise from varying the gauge fields in
the X kinetic term and varying the spinor fields in Ly. The adjoint terms work the same
way. The terms of the indicated structure that arise from varying the gauge fields in the
X kinetic term are

TBC [Upyte! (Xe XADyXa — DpXaX* Xe + XaDy XA X — Xe Dy X4 X4)]. (ALT)
The terms of the indicated structure that arise from varying L4, are

—2ieABOPtr(§Up X 4 W pXo) = —2ieBOPTE e (U pyte! Xo D, XE X 4)
= i0pBET PGty (U pyte! XD, X P X 4)
= 24T Bty (U pyte! Xe D, XA X 4 + Uote! X 4D, XA X
+U el XpDW XA X0).

The terms of the indicated structure that arise from varying L4, are

itr(OUP U X 4 X4) — itr(T s P X4 X )
= il B [ pyte (D Xe XA X4 — XaX D, Xc)].

The terms of the indicated structure that arise from varying L. are

2itr (V400 XAX p) — 2itr(00P W 4 XpX4)
= 2T1B% [ O gye! (XpX 4D, X + D, XpX*Xc)].

Adding these up, we obtain

20 B [ py#e' D (Xp XA X0))
D IBC [\Tf sy (Du(XoXAX ) — DM(XAXAXC))} .

Thus, this can cancel against a variation of the spinor field in the spinor kinetic term for
the choice

6304 = TIAB (X XOXp — XpX9X0) — 2DTBCI X XA X0 (A.18)

Determination of V. = —Lg. The next step is to determine Lg by requiring that its
0X variation cancels against the d3W variation of Ly. A key identity in the analysis is

Il pr6P = 9550, (A.19)

This is verified by showing that the two sides agree when contracted with 5g as well as with
(T/TK —TET7)B . Since these are 16 linearly independent 4 x 4 matrices, this constitutes
a complete proof.

— 11 —



The supersymmetry variation of Ly, keeping all terms containing ¥4 but not ¥ 4 (since
the W4 terms work in the same way) is

0Ly = —QZ'EABCD'EI"<53\1’AXB\I/CXD>
titr (804 (XpXPWA = WAXP X + 208 XAX — 2Xp XAWF) ),

where, as derived previously,

_ 1
5304 = Ty [geACHK (XpXPXc — XoXPXp) - EFGHKXFXAXG] e,
0304 = [-The (XOXpXP — XPXpXY) 4 20 XK XA X €.

FExpanding §L, is straightforward algebra and gives

tr<3XA5XAXBXBXCX(; 30X AXAXpXBXoXC
XX XBX 4 XC X — 2XAXp X B XA XC X — 2XAXpXPX 4 X6 X
AT €U (XX A XBXpXE + XPXp X X4 XE + XHXp XK Xy X5
~XTXpXPXAXT - XPXAXTXpX T — XTI X XK XpXP]

+2ieapopel CHETL ¢ \IJAXBXFXCXgXD).
The first two lines can be reproduced by varying
Vi =tr <XAXAXBXBXC Xe + XaXAXpXBXoXC - 2XAXBXBXAXCXC). (A.20)

The last line cancels the third and fourth lines and contributes additional terms to Vi, as
we will now show. For this purpose, the following identity is useful:

2eapcpe’ BT = enpepe “HET Y (2677 65)
_ ELBCDEFGHKFﬁK <F{4MfJML n F:Z‘Mf\IML)
FGM I GPQF  FPQ G 11
= 40p¢p Danr + 2 (530%5A - 530?)514) I'pg,

where we have used (AI9) to go from the second line to the third line. Plugging this
identity into the last line of ([A-20) gives

tr( AEEM 5 X X B X pXC X XD
+2i0; & U (6GEE o5 — o585 0S) XBXxrX© XGXD) .
Expanding the first term in (|A.21)) gives

dtr [~ XPSXp X XpXOXe — 6XpXPXc X XpXP — 6Xe X9 XpXO X XP
+6Xc X XpXOXpXP +6XpXPXpXOXeXP + 6Xp XXX XaXP],

- 12 —



which also comes from varying
Vy = tr( - %XAXAXBXBXCXC - %XAXAXBXBXCXC
—%XAXBXCXAXBXC +4XA XX P X4 XOXG).
Adding this potential to eq. ([A.20) gives the total potential

1
V= —3tr [XAXAXBXBXCXC + XA XA XpXBXoXC
+AX A XBX e XAXpXC — 6XAXBXBXAXCXC] .

Furthermore, straightforward algebra shows that the second term in eq. ([A.21) precisely
cancels the terms in the third and fourth lines of eq. ([A.2(). So we conclude that the
variation of L4 is completely canceled by varying —V. This expression agrees with the
potential obtained in [, B].

It is also interesting to note that V' is proportional to the trace of the absolute square
of the X3 expression that appears in d3¥. Specifically,

1
V= gtr(NIANi), (A.21)

which is straightforward to verify using eq. (JA.19).
Conserved supersymmetry current. The conserved supersymmetry current of the

U(N) x U(N) theory, generalizing the expression given earlier for the U(1) x U(1) theory,
is

QfL =tr <M£7H\I’A) + tr (MIA%L\I/A>. (A.22)
Here
MYy = -Thpy - DXP + N| (A.23)
and
M4 =TI48y . DXp + N4 (A.24)

are quantities that appear in the supersymmetry variations of the spinor fields ¥4 and ¥4,
respectively. The quantity N1 and its adjoint N'4 were defined in egs. (§:20) and (B-21).
The verification that this current is conserved as a consequence of the equations of motion is
rather tedious. In any case, it would be redundant, since it is equivalent to the verification
of the supersymmetry of the action, which we have just carried out.

Conformal supersymmetry. In the U(1) x U(1l) case, we found that the conformal
supersymmetries can be described by replacing ¢! in the Poincaré supersymmetries by
v -zn’ and by adding an additional term to the spinor field transformations

Sy =ThXBy! (A.25)

and its adjoint. Let us now verify that the same rule continues to work for N > 1. Most
terms cancel as a consequence of the Poincaré supersymmetry. The remaining ones that

- 13 —



need to cancel separately are those that arise from the derivative in iW 4y - DSU4 acting
on the explicit z* in the n! transformation. This gives

i 4 [ff AB(y. DXp +3XcXCXp — 3XpXCXco) — 6T/ BCXp XA X 0. (A.26)

The first term in this expression is canceled by the ¥4 variation of the spinor kinetic
term. The remaining terms need to cancel against the 6’¥ variation of Ls. The relevant
terms that arise in this way are

2ieABOPtr(§' U A XpWeXp) + itr (6 TAV A X p X P) — itr(U 0 TAXB X p5)
2itr (V48" WEXAX p) — 2itr (8 TBW L, X5 XA).

By manipulations similar to those described previously, the first term in this expression
can be recast in the form

AUTTBCtr (WA XpXAXo + UpXoXAX 4 4+ Vo XA XA X )7 . (A.27)
Combining this with the other four terms leaves
i [fIAB(—:sXCXC Xp +3XpXCXc) + GfIBCXBXAXC] 0l (A.28)

This provides the desired cancellation, which proves that the theory has conformal super-
Ssymmetry.

Taken together with the A/ = 6 Poincaré supersymmetry, the conformal supersymme-
try implies that the theory has the full OSp(6|4) superconformal symmetry. Even though
this result is necessary for a dual AdS interpretation, it was not at all obvious that this
symmetry would hold. After all, it is not a logical consequence of the other symmetries
that have been verified.

Accordingly, the conserved conformal supersymmetry currents in the U(N) x U(N)
theory are given by

Sh=x.2QL —Thgtr (XBWIJA) 4 DIABy (XBWIJ A). (A.29)
As a check on our analysis, let us compute the divergence. The DXP terms cancel leaving
oSt = tr (3N£¢A +3NTAG, — DL, X By DUA £ TIAB Y 5y . D\I/A), (A.30)

where N4 and N'4 are as before. Using the spinor field equations of motion ([.19)
and (A.16) to eliminate v - D¥4 and v - DW 4, the terms in 8“S[L that involve ¥4 are

3tr (Nj\I/A) + 2eacppl 4Bt (XBXC \I/DXE)
Tl gt (XB [ XeXCUA 1 0AXCOXo — 200 XA X + 2XCXA\IJC]).

A short calculation, similar to previous ones, shows that this vanishes.
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