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1. Introduction

This paper examines a new class of superconformal field theories in three dimensions that

was recently discovered by Aharony, Bergman, Jafferis, and Maldacena (ABJM) [1]. These

theories are superconformal Chern-Simons gauge theories with N = 6 supersymmetry.

When the gauge group is chosen to be U(N) × U(N) and the Chern-Simons level is k,

these theories are conjectured to be dual to M-theory on AdS4 × S7/Zk with N units of

flux. More precisely, this is the appropriate dual description for N1/5 ≫ k. In the opposite

limit, N1/5 ≪ k ≪ N , a dual description in terms of type IIA string theory on AdS4×CP 3

is more appropriate. A large-N expansion for fixed ’t Hooft parameter λ = N/k can be

defined. These developments raise the hope that this duality can be analyzed in the same

level of detail as has been done for the duality between N = 4 super Yang-Mills theory

with a U(N) gauge group in four dimensions and type IIB superstring theory on AdS5×S
5

with N units of flux.

Even though the ABJM paper is very recent, quite a few papers have already appeared

that examine various of its properties as well as possible generalizations. Among the first

are [2]–[15]. New superconformal Chern-Simons theories with N = 5 supersymmetry have

been constructed in [11]. (This paper also does many other things.) Certain of these N = 5

theories should be dual to the Dk+2 orbifolds described in [12]. Also, in a very interesting

recent paper [13], Bagger and Lambert show that the ABJM theories correspond to a class

of 3-algebras in which the bracket [T a, T b, T c] is no longer antisymmetric in all three indices.

The actions and supersymmetry transformations that are derived in [11, 13] appear to be

equivalent to the actions and supersymmetry transformations that are obtained in this

paper (without reference to 3-algebras).

The three-dimensional superconformal field theories of coincident M2-branes were ini-

tially defined as infrared fixed points of super Yang-Mills theories, i.e., as limits of the

form gYM → ∞. In [16] it was proposed that these fixed points could be reformulated
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in a more useful dual formulation analogous to a Seiberg dual. It was suggested that the

theory would be a gauge theory in which the gauge fields couple to dimension-1/2 scalar

and dimension-1 spinor fields. Since all terms should be dimension 3, there should be no

dimension-4 F 2 kinetic terms, but dimension-3 Chern-Simons terms would be allowed. An

approach to constructing such theories based on considering multiple M2-branes ending on

an M5-brane was proposed in [17]. Several years later, a specific example of such a super-

conformal Chern-Simons theory with maximal (N = 8) supersymmetry was constructed by

Bagger and Lambert [18 – 20] and by Gustavsson [21, 22]. This theory is parity conserving

and has SO(4) = SU(2) × SU(2) gauge symmetry [23, 24]. The scalars and spinors are

4-vectors of SO(4), or (equivalently) bifundamentals of SU(2) × SU(2).

The BLG theory was conjectured [23] and proved [25, 26] to be the unique theory of this

type with maximal supersymmetry. (Generalizations based on Lorentzian 3-algebras [27 –

29] turned out to be equivalent to the original super Yang-Mills theories once the ghosts

were eliminated [30 – 32].) This left the possibility of considering theories with reduced

supersymmetry. A large class of superconformal Chern-Simons theories with N = 4 super-

symmetry was constructed by Gaiotto and Witten [33]. This was generalized to include

twisted hypermultiplets in [11, 34]. This generalization includes the Bagger-Lambert the-

ory as a special case. Moreover, all the ABJM theories turn out to be special cases of the

generalized Gaiotto-Witten theories in which the supersymmetry is enhanced to N = 6.

The dual M-theory picture requires that for levels k = 1, 2 the ABJM theories should have

N = 8 supersymmetry. However, this has not yet been demonstrated explicitly.

The purpose of this paper is to recast the ABJM theory in a form for which the

SU(4) R-symmetry of the action and the supersymmetry transformations is manifest and

to use this form to study some of its properties. The existence of such formulas is a

consequence of what was found in [1]. We also verify the conformal supersymmetry of

the action, which is not a logical consequence of previous results. Since this symmetry

is a necessary requirement for the validity of the proposed duality, its verification can be

viewed as an important and nontrivial test of the duality. We also recast the potential,

which is sixth order in the scalar fields, in a new form.1 This new form should be useful for

studying the moduli space of supersymmetric vacua of the theory, as well as the vacuum

structure of various deformations of the ABJM theory. Although we discuss the gauge

group U(N)×U(N), all of our analysis also holds for the straightforward generalization to

U(M) × U(N).

Some of our results are new and others confirm results that have been obtained pre-

viously. The ABJM theories were formulated in [1] using auxiliary fields associated with

N = 2 superfields. In this formulation only an SU(2) × SU(2) subgroup of the SU(4) R-

symmetry is manifest, though the full SU(4) symmetry has been deduced. In addition, [1]

deduced a manifestly SU(4) invariant form of the scalar field potential, which is sixth order

in the scalar fields. The quartic interaction terms that have two scalar and two spinor fields

were also recast in an SU(4) covariant form in [2]. Our results are in agreement with both

of these.

1A similar formula also appears in [13].
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2. The U(1) × U(1) theory

The field content of ABJM theories consists of scalars, spinors, and gauge fields. The

U(1) × U(1) theory has fewer indices to keep track of, and it is quite a bit simpler, than

the full U(N) × U(N) theory; so it is a good place to start.

There are four complex scalars XA and their adjoints XA. (We choose not to use

adjoint or complex conjugation symbols to keep the notation from becoming too cumber-

some.) A lower index labels the 4 representation of the global SU(4) R-symmetry and an

upper index labels the complex-conjugate 4̄ representation.

Similarly, the fermi fields are ΨA and ΨA. These are also two-component spinors,

though that index is not displayed. As usual, the notation Ψ̄A or Ψ̄A implies transposing

the spinor index and right multiplication by γ0. Note, however, that for our definition

there is no additional complex conjugation, so in all cases a lower index indicates a 4

and an upper index indicates a 4̄. With these conventions various identities that hold for

Majorana spinors can be used for these spinors, as well, even though they are complex

(Dirac). For example, Ψ̄AΨB = Ψ̄BΨA. The 2 × 2 Dirac matrices satisfy {γµ, γν} = 2ηµν .

The index µ = 0, 1, 2 is a 3-dimensional Lorentz index, and the signature is (−,+,+). It is

convenient to use a Majorana representation, which implies that γµ is real. We also choose

a representation for which γµνλ = εµνλ. In particular, this means that γ0γ1γ2 = 1. For

example, one could choose γ0 = iσ2, γ1 = σ1, and γ2 = σ3.

The U(1) gauge fields are denoted Aµ and Âµ. The fieldsXA and ΨA have U(1) charges

(+,−), while their adjoints have charges (−,+). Thus, for example,

DµXA = ∂µXA + i(Aµ − Âµ)XA. (2.1)

and

DµX
A = ∂µX

A − i(Aµ − Âµ)XA. (2.2)

We choose to normalize fields so that the level-k Lagrangian is k times the level-1

Lagrangian. With this convention, the N = 1 action is

S =
k

2π

∫

d3x

(

−DµXADµXA + iΨ̄Aγ
µDµΨA +

1

2
εµνλ(Aµ∂νAλ − Âµ∂νÂλ)

)

. (2.3)

The claim is that this action describes an N = 6 superconformal theory with OSp(6|4)

superconformal symmetry. The R-symmetry is Spin(6) = SU(4) and the conformal sym-

metry is Sp(4) = Spin(3, 2). The supercharges transform as the 6 representation of SU(4).

Both the Poincaré and conformal supercharges are 6-vectors. Each accounts for 12 of the

24 fermionic generators of the superconformal algebra.

The antisymmetric product of two 4s gives a 6. The invariant tensor (or Clebsch-

Gordan coefficients) describing this is denoted ΓI
AB = −ΓI

BA, since these can be interpreted

as six matrices satisfying a Clifford algebra. More precisely, if one also defines Γ̃I = (ΓI)†,

or in components

Γ̃IAB =
1

2
εABCDΓI

CD = −
(

ΓI
AB

)∗
, (2.4)
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ΓI Γ̃J + ΓJ Γ̃I = 2δIJ . (2.5)

Note that γµ are 2 × 2 matrices and ΓI are 4 × 4 matrices. They act on different vector

spaces, and therefore they trivially commute with one another.

The supersymmetry transformations of the matter fields are

δXA = iΓI
ABΨ̄BεI (2.6)

δΨA = ΓI
ABγ

µεIDµX
B (2.7)

and their adjoints, which are

δXA = −iΓ̃IABΨ̄Bε
I (2.8)

δΨA = −Γ̃IABγµεIDµXB . (2.9)

For the gauge fields we have

δAµ = δÂµ = −ΓI
ABΨ̄Aγµε

IXB − Γ̃IABΨ̄Aγµε
IXB . (2.10)

The verification that these leave the action invariant is given in the appendix.

Note that the covariant derivatives only involve A−, where

A± = A± Â. (2.11)

Therefore, let us rewrite the Chern-Simons terms using [35]

∫

(A ∧ dA− Â ∧ dÂ) =

∫

A+ ∧ dA− =

∫

A− ∧ dA+. (2.12)

Since this is the only appearance of A+ in the action, it can be integrated out to give the

delta functional constraint

F− = dA− = 0. (2.13)

The A− equation of motion, on the other hand, just identifies F+ with the dual of the

charge current. Since the kinetic terms are defined with a flat connection A−, this is just

a free theory when the topology is trivial, which is the case for k = 1. Then this theory

has N = 8 superconformal symmetry.

ABJM proposes to treat F+ as an independent variable and to add a Lagrange multi-

plier term to ensure that F+ is a curl

Sτ =
1

4π

∫

τεµνλ∂µF+νλd
3x. (2.14)

Then the quantization condition on F+ requires that τ has period 2π. They then explain

that after gauge fixing τ = 0 one is left with a residual Zk gauge symmetry under which

XA → exp(2πi/k)XA and similarly for ΨA. Thus one is left with a sigma model on C
4/Zk.

2An explicit realization in terms of Pauli matrices is given by Γ1 = iσ2 ⊗ 1, Γ2 = σ2 ⊗ σ1, Γ3 = σ2 ⊗ σ3,

Γ4 = 1 ⊗ σ2, Γ5 = iσ1 ⊗ σ2, Γ6 = iσ3 ⊗ σ2.
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This breaks the supersymmetry from N = 8 to N = 6 for k > 2. The reason for this is

that the 8-component Spin(8) supercharge decomposes with respect to the SU(4) × U(1)

subgroup as 60 +12 +1−2. Because of their U(1) charges, the singlets transform under a Zk

transformation as Q → exp(±4πi/k)Q. Therefore two of the supersymmetries are broken

for k > 2.

This analysis of the U(1) factors continues to apply in the U(N)×U(N) theories with

N > 1. The Bagger-Lambert theory corresponds to the gauge group SU(2)× SU(2). Since

it has no U(1) factors, no discrete Zk gauge symmetry arises, and this theory has N = 8

superconformal symmetry for all values of k. So, it is different from the U(2)×U(2) ABJM

theory, and its interpretation in terms of branes or geometry (see [36, 37]) must also be

different.

3. The U(N) × U(N) theory

The field content of the U(N) × U(N) ABJM theory consists of four N × N matrices of

complex scalars (XA)aâ and their adjoints (XA)âa. These transform as (N̄,N) and (N, N̄)

representations of the gauge group, respectively. Similarly, the spinor fields are matrices

(ΨA)aâ and their adjoints (ΨA)âa. The U(N) gauge fields are hermitian matrices Aa
b and

Ââ
b̂. In matrix notation, the covariant derivatives are

DµXA = ∂µXA + i(AµXA −XAÂµ) (3.1)

and

DµX
A = ∂µX

A + i(ÂµX
A −XAAµ) (3.2)

with similar formulas for the spinors. Infinitesimal gauge transformations are given by

δAµ = DµΛ = ∂µΛ + i[Aµ,Λ], (3.3)

δÂµ = DµΛ̂ = ∂µΛ̂ + i[Âµ, Λ̂], (3.4)

δXA = −iΛXA + iXAΛ̂, (3.5)

The action consists of terms that are straightforward generalizations of those of the

U(1) × U(1) theory, as well as new interaction terms that vanish for N = 1. The kinetic

and Chern-Simons terms are

Skin =
k

2π

∫

d3x tr
(

−DµXADµXA + iΨ̄Aγ
µDµΨA

)

. (3.6)

and

SCS =
k

2π

∫

d3x εµνλtr
(1

2
Aµ∂νAλ +

i

3
AµAνAλ −

1

2
Âµ∂νÂλ −

i

3
ÂµÂνÂλ

)

. (3.7)

Additional interaction terms of the schematic form X2Ψ2 and X6 remain to be determined.

These terms are not required to deduce the equations of motion of the gauge fields, which

are

Jµ =
1

2
εµνλFνλ Ĵµ = −

1

2
εµνλF̂νλ, (3.8)

– 5 –
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where

Jµ = iXAD
µXA − iDµXAX

A − Ψ̄AγµΨA (3.9)

and

Ĵµ = iXADµXA − iDµXAXA − Ψ̄Aγ
µΨA. (3.10)

Note that in the special case of U(1) × U(1) one has Jµ = −Ĵµ, and hence the equations

of motion imply Fµν = F̂µν .

In matrix notation, the supersymmetry transformations of the matter fields are

δXA = iΓI
AB ε̄

IΨB (3.11)

and

δΨ̄A = −ΓI
AB ε̄

IγµDµX
B + δ3Ψ̄A (3.12)

or equivalently

δΨA = ΓI
ABγ

µεIDµX
B + δ3ΨA. (3.13)

and their adjoints, which are

δXA = −iΓ̃IABΨ̄Bε
I (3.14)

and

δΨA = −Γ̃IABγµεIDµXB + δ3Ψ
A. (3.15)

or equivalently

δΨ̄A = Γ̃IAB ε̄IγµDµXB + δ3Ψ̄
A. (3.16)

The terms denoted δ3 are cubic in X and are given below. The supersymmetry transfor-

mations of the gauge fields are

δAµ = ΓI
AB ε̄

IγµΨAXB − Γ̃IABXBΨ̄Aγµε
I (3.17)

δÂµ = ΓI
ABX

B ε̄IγµΨA − Γ̃IABΨ̄Aγµε
IXB . (3.18)

Note that δAµ 6= δÂµ for N > 1. They are matrices in different spaces.

In the appendix we show that supersymmetry requires the choice

δ3Ψ
A = N IAεI δ3ΨA = N I

Aε
I , (3.19)

where

N IA = Γ̃IAB(XCX
CXB −XBX

CXC) − 2Γ̃IBCXBX
AXC . (3.20)

and

N I
A = (N IA)† = ΓI

AB(XCXCX
B −XBXCX

C) − 2ΓI
BCX

BXAX
C . (3.21)

Note that these expressions vanish when the matrices XA (and their adjoints XA) are

diagonal.

All the possible structures for the Ψ2X2 terms are

L4a = iεABCDtr(Ψ̄AXBΨCXD) − iεABCDtr(Ψ̄AXBΨCXD) (3.22)

L4b = itr(Ψ̄AΨAXBX
B) − itr(Ψ̄AΨAXBXB) (3.23)

L4c = 2itr(Ψ̄AΨBXAXB) − 2itr(Ψ̄BΨAXBX
A) (3.24)

– 6 –
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The coefficients are chosen so that L4 = L4a + L4b + L4c is the correct result required by

supersymmetry, as is demonstrated in the appendix.

The lagrangian also contains a term L6 = −V that is sixth order in the scalar fields.

The scalar potential V is expected to be nonnegative and to vanish for a supersymmetric

vacuum. An SU(4) covariant formula for V in terms of the fields XA and XA has been

given in [1, 2]

V = −
1

3
tr

[

XAXAX
BXBX

CXC +XAX
AXBX

BXCX
C (3.25)

+4XAX
BXCX

AXBX
C − 6XAXBX

BXAX
CXC

]

,

a result that we confirm in the appendix.

This formula for V is not expressed as a sum of squares, which makes it inconvenient for

determining the extrema. For a supersymmetric vacuum, δΨA = δΨA = 0. In particular,

for a solution in which the scalar fields XA and XA are constant, and the gauge fields

vanish, the variations δ3Ψ
A and δ3ΨA should vanish. This implies that N IA = 0 and

N I
A = (N IA)† = 0. The way to ensure these requirements, as well as manifest SU(4)

symmetry, is for the potential to take the form

V =
1

6
tr(N IAN I

A). (3.26)

The definitions of N IA and N I
A are given in eqs. (3.20) and (3.21). It is straightforward

to verify the equivalence of eqs. (3.25) and (3.26) for this choice of the coefficient by using

the key identity

ΓI
ABΓ̃ICD = −2δCD

AB . (3.27)

The indicated relationship between the potential and δ3Ψ in eq. (3.26) should be quite

general in theories of this type. As has already been noted, N IA and N I
A vanish when the

scalar fields are diagonal matrices. To get the expected moduli space, these should be the

only choices for which they vanish (modulo gauge transformations).

4. Conclusion

The study of ABJM theories has become a hot topic. The technology that has been devel-

oped in the study of the duality between four-dimensional superconformal gauge theories

and AdS5 vacua of type IIB superstring theory can now be adapted to a new setting. It

should now be possible to study the duality between three-dimensional superconformal

Chern-Simon theories and AdS4 vacua of type IIA superstring theory and M-theory. A

great deal should be learned in the process, and there may even be applications to other

areas of physics.

Our contribution to this subject is modest: We have verified the Poincaré supersym-

metries of the ABJM theory in a formalism with manifest SU(4) symmetry. The action

that we obtained agrees with results given in [1, 2, 13]. We have also verified by explicit

calculation that this action has the conformal supersymmetries that are required by the

proposed duality. Since this is not implied by any previous calculations, it is an important

– 7 –
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(and nontrivial) test of the duality. Taken together with the Poincaré supersymmetries,

this implies the full OSp(6|4) superconformal symmetry of the action. We have also recast

the sextic potential as a sum of squares in eq. (3.26), a form that should prove useful in

future studies.
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A. Verification of superconformal symmetry

The U(1) × U(1) theory. Let us check the supersymmetry of the U(1) × U(1) theory.

We only analyze half of the terms, since the other half are just their adjoints. Omitting

the factor of k/2π, the variation of the Lagrangian contains (dropping total derivatives)

∆1 = −DµXADµδXA = iD2XAε̄IΓI
ABΨB (A.1)

and

∆2 = iδΨ̄Aγ ·DΨA

= −iΓI
AB ε̄

Iγ ·DXBγ ·DΨA (A.2)

= iΓI
AB ε̄

ID2XBΨA −
1

2
ΓI

AB ε̄
Iγρµ(Fρµ − F̂ρµ)XBΨA. (A.3)

Note that the gauge fields only appear in the covariant derivatives in the combination A−Â,

which has a vanishing supersymmetry variation. The variation of the Chern-Simons term,

using the first term in eq. (2.10), contributes

∆3 =
1

2
εµνλε̄IγµΨAΓI

ABX
B(Fνλ − F̂νλ). (A.4)

Using εµνλγµ = γνλ, we see that ∆1 + ∆2 + ∆3 = 0. The other half of the terms in

the variation of the action, which are the adjoints of the ones considered here, cancel in

the same way. The conserved supersymmetry current can be computed by the standard

Noether procedure. This gives (aside from an arbitrary normalization)

QI
µ = ΓI

ABγ ·DXAγµΨB − Γ̃IABγ ·DXAγµΨB . (A.5)

One can check this result by computing the divergence. This vanishes as a consequence of

the equations of motion γ ·DΨB = 0, D ·DXA = 0, and Fµν − F̂µν = 0.

Let us now explore the conformal supersymmetry, with an infinitesimal spinor param-

eter ηI , using the method explained in [23]. As a first try, consider replacing εI by γ · xηI

in the preceding equations, since this has the correct dimensions. Using ∂µε(x) = γµη and

– 8 –
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γµγργµ = −γρ, this gives a variation of the action that almost cancels, except for a couple

of terms. These remaining terms can be canceled by including an additional variation of

the spinor fields. It has the form

δ′ΨA = −Γ̃IABηIXB δ′ΨA = ΓI
ABη

IXB . (A.6)

Correspondingly, the conserved superconformal current is

SI
µ = γ · xQI

µ + ΓI
ABX

AγµΨB − Γ̃IABXAγµΨB. (A.7)

As a check, one can compute the divergence using the conservation of QI
µ and the spinor

field equation of motion

∂µSI
µ = γµQI

µ + ΓI
ABγ ·DXAΨB − Γ̃IABγ ·DXAΨB = 0. (A.8)

The various bosonic OSp(6|4) symmetry transformations are obtained by commuting

ε and η transformations. Of these only the conformal transformation, obtained as the com-

mutator of two η transformations, is not a manifest symmetry of the action. It is often true

that scale invariance implies conformal symmetry. However, this is not a general theorem,

so it is a good idea to check the conformal symmetry (or the conformal supersymmetry)

explicitly.

The U(N)×U(N) theory. Let us now examine the supersymmetry of the U(N)×U(N)

theory. Some of the terms are simple generalizations of those examined in the N = 1 case

and will not be described here. Rather, we focus on those that only arise for N > 1. We

will first determine the quartic Ψ2X2 term (called L4) in the action by requiring that the

variation of its X fields cancels the terms that arise from varying the gauge fields in the

spinor kinetic term. Since these terms are cubic in Ψ, various Fierz identities are required.

The second step is to determine the variation δ3Ψ by requiring that this variation of the

spinor kinetic term cancels against the lowest-order variation of the Ψ fields in L4 and

the variation of the gauge fields in the scalar kinetic term. The third and final step is to

determine L6 by arranging that its variation cancels against the δ3Ψ variation of L4. After

this has been completed, we verify the conformal supersymmetry.

Determination of L4. A useful identity involving four two-component Majorana

spinors, obtained by a Fierz transformation, is

ψ̄1γµψ2ψ̄3γ
µε = −2ε̄ψ1ψ̄2ψ3 − ψ̄1ψ2ε̄ψ3. (A.9)

Juggling the indices this can be recast in the form

ε̄γµψ1ψ̄2γ
µψ3 = −2ψ̄1ψ2ε̄ψ3 − ε̄ψ1ψ̄2ψ3. (A.10)

These will be useful for eliminating Dirac matrices from equations that arise later. As

written, these relations preserve the 123 sequence of the spinors, which is convenient if they

are matrices that are to be multiplied. However, the right-hand sides can be rewritten in

other ways without Dirac matrices using the relation

ψ1ψ̄2ψ3 + ψ2ψ̄3ψ1 + ψ3ψ̄1ψ2 = 0. (A.11)
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This equation will also be useful.

Varying the gauge fields in the spinor kinetic term of the U(N)×U(N) theory (dropping

a factor of k/2π) gives

tr
(

Ψ̄Aγ
µ(−δAµΨA + ΨAδÂµ)

)

. (A.12)

Keeping only the terms with two superscripts on spinor fields, since the other terms are

just their adjoints, leaves

ΓI
BCtr(−Ψ̄AγµΨAΨ̄Bγµε

IXC + ε̄IγµΨBΨ̄AγµΨAXC). (A.13)

Inserting the identities above, so as to eliminate Dirac matrices while retaining the order

of the matrices, which are implicitly multiplied, leaves

ΓI
BCtr

(

2ε̄IΨAΨ̄AΨBXC +Ψ̄AΨAε̄
IΨBXC−2Ψ̄BΨAε̄

IΨAXC−ε̄IΨBΨ̄AΨAXC
)

= itr(Ψ̄AΨAδXBX
B)−itr(Ψ̄AΨAXBδXB)+2ΓI

BCtr(ε̄IΨA[Ψ̄AΨBXC−XCΨ̄BΨA]).

Now consider varying the X fields in the second term in L4a. This gives

−2iεABCDtr(Ψ̄AδXBΨCXD) = −2Γ̃IBEεABCDtr(Ψ̄Aε̄IΨEΨCXD)

= −εBEFGεABCDΓI
FGtr(Ψ̄Aε̄IΨEΨCXD)

= δEFG
ACDΓI

FGtr(Ψ̄Aε̄IΨEΨCXD)

= −δEFG
ACDΓI

FGtr(Ψ̄AΨE ε̄
IΨCXD + Ψ̄AεIΨ̄EΨCXD)

= −2itr(Ψ̄AΨAδXBX
B) + 2itr(Ψ̄AΨAXBδXB)

+2itr(Ψ̄AΨBδXAX
B) − 2itr(Ψ̄AΨBXAδXB)

−2ΓI
BCtr(ε̄IΨA[Ψ̄AΨBXC −XCΨ̄BΨA]),

where we have used eq. (A.11). Here we have used the definition

δDEF
ABC = 6δ

[D
A δE

Bδ
F ]
C . (A.14)

These two sets of terms combine to leave

−itr(Ψ̄AΨAδXBX
B) + itr(Ψ̄AΨAXBδXB)

+2itr(Ψ̄BΨAδXBX
A) − 2itr(Ψ̄AΨBXAδXB).

These terms are canceled in turn by varying XB in L4b and L4c. Thus, terms of this

structure in the supersymmetry transformations cancel for the choice of L4 given in section

3. The adjoint terms cancel in the same way.

Since we now have the complete dependence of the action on spinor fields, we can

deduce the spinor field equations of motion. They are

γ ·DΨA = −2εABCDXBΨCXD −XBX
BΨA + ΨAXBXB

−2ΨBXAXB + 2XBX
AΨB (A.15)

and its adjoint

γ ·DΨA = 2εABCDX
BΨCXD +XBXBΨA − ΨAXBX

B

+2ΨBXAX
B − 2XBXAΨB. (A.16)
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Determination of δ3Ψ. Having determined L4, we are now in a position to

determine δ3Ψ by computing terms of the schematic structure tr(ΨADXBX
CXD),

tr(ΨAXBDX
CXD), and tr(ΨAXBX

CDXD) that arise from varying the gauge fields in

the X kinetic term and varying the spinor fields in L4. The adjoint terms work the same

way. The terms of the indicated structure that arise from varying the gauge fields in the

X kinetic term are

iΓ̃IBCtr
[

Ψ̄Bγ
µεI(XCX

ADµXA −DµXAX
AXC +XADµX

AXC −XCDµX
AXA)

]

. (A.17)

The terms of the indicated structure that arise from varying L4a are

−2iεABCDtr(δΨ̄DXAΨBXC) = −2iεABCDΓI
DEtr(Ψ̄Bγ

µεIXCDµX
EXA)

= iδABC
EFGΓ̃IFGtr(Ψ̄Bγ

µεIXCDµX
EXA)

= 2iΓ̃IBCtr(Ψ̄Bγ
µεIXCDµX

AXA + Ψ̄Cγ
µεIXADµX

AXB

+Ψ̄Aγ
µεIXBDµX

AXC).

The terms of the indicated structure that arise from varying L4b are

itr(δΨ̄BΨBXAX
A) − itr(Ψ̄BδΨ

BXAXA)

= iΓ̃IBCtr
[

Ψ̄Bγ
µεI(DµXCX

AXA −XAX
ADµXC)

]

.

The terms of the indicated structure that arise from varying L4c are

2itr(Ψ̄AδΨ
BXAXB) − 2itr(δΨ̄BΨAXBX

A)

= 2iΓ̃IBCtr
[

Ψ̄Aγ
µεI(XBX

ADµXC +DµXBX
AXC)

]

.

Adding these up, we obtain

2iΓ̃IBCtr
[

Ψ̄Aγ
µεIDµ(XBX

AXC)
]

+iΓ̃IBCtr
[

Ψ̄Bγ
µεI

(

Dµ(XCX
AXA) −Dµ(XAX

AXC)
)

]

.

Thus, this can cancel against a variation of the spinor field in the spinor kinetic term for

the choice

δ3Ψ
A = Γ̃IABεI(XCX

CXB −XBX
CXC) − 2Γ̃IBCεIXBX

AXC . (A.18)

Determination of V = −L6. The next step is to determine L6 by requiring that its

δX variation cancels against the δ3Ψ variation of L4. A key identity in the analysis is

ΓI
ABΓ̃ICD = −2δCD

AB . (A.19)

This is verified by showing that the two sides agree when contracted with δB
C as well as with

(Γ̃JΓK − Γ̃KΓJ)BC . Since these are 16 linearly independent 4×4 matrices, this constitutes

a complete proof.
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The supersymmetry variation of L4, keeping all terms containing ΨA but not ΨA (since

the ΨA terms work in the same way) is

δL4 = −2iǫABCDtr
(

δ3Ψ̄
AXBΨCXD

)

+itr
(

δ3Ψ̄A

(

XBX
BΨA − ΨAXBXB + 2ΨBXAXB − 2XBX

AΨB
)

)

,

where, as derived previously,

δ3Ψ̄
A = ΓI

HK

[

1

2
ǫACHK

(

XDX
DXC −XCX

DXD

)

− ǫFGHKXFX
AXG

]

ǭI ,

δ3Ψ̄A =
[

−ΓI
AC

(

XCXDX
D −XDXDX

C
)

+ 2ΓI
HKX

KXAX
H

]

ǭI .

Expanding δL4 is straightforward algebra and gives

tr
(

3XAδXAX
BXBX

CXC + 3δXAX
AXBX

BXCX
C

−2XAδXBX
BXAX

CXC − 2XAXBX
BδXAX

CXC − 2XAXBX
BXAX

CδXC

+4iΓI
HK ǭ

IΨA
[

XHXAX
BXBX

K +XBXBX
HXAX

K +XHXBX
KXAX

B

−XHXBX
BXAX

K −XBXAX
HXBX

K −XHXAX
KXBX

B
]

+2iǫABCDǫ
FGHKΓI

HK ǭ
IΨAXBXFX

CXGX
D

)

.

The first two lines can be reproduced by varying

V1 = tr
(

XAXAX
BXBX

CXC +XAX
AXBX

BXCX
C − 2XAXBX

BXAX
CXC

)

. (A.20)

The last line cancels the third and fourth lines and contributes additional terms to V1, as

we will now show. For this purpose, the following identity is useful:

2ǫABCDǫ
FGHKΓI

HK = ǫLBCDǫ
FGHKΓJ

HK

(

2δIJδL
A

)

= ǫLBCDǫ
FGHKΓJ

HK

(

ΓI
AM Γ̃JML + ΓJ

AM Γ̃IML
)

= 4δFGM
BCD ΓI

AM + 2
(

δGPQ
BCDδ

F
A − δFPQ

BCDδ
G
A

)

ΓI
PQ,

where we have used (A.19) to go from the second line to the third line. Plugging this

identity into the last line of (A.20) gives

tr
(

− 4δFGM
BCD δXMXBXFX

CXGX
D

+2iΓI
HK ǭ

IΨA
(

δGHK
BCD δ

F
A − δFHK

BCD δ
G
A

)

XBXFX
CXGX

D
)

.

Expanding the first term in (A.21) gives

4tr
[

−XDδXDX
FXFX

GXG − δXBX
BXCX

CXDX
D − δXCX

GXDX
CXGX

D

+δXCX
FXFX

CXDX
D + δXBX

BXDX
GXGX

D + δXDX
GXCX

CXGX
D

]

,

– 12 –
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which also comes from varying

V2 = tr
(

−
4

3
XAXAX

BXBX
CXC −

4

3
XAX

AXBX
BXCX

C

−
4

3
XAX

BXCX
AXBX

C + 4XAXBX
BXAX

CXC

)

.

Adding this potential to eq. (A.20) gives the total potential

V = −
1

3
tr

[

XAXAX
BXBX

CXC +XAX
AXBX

BXCX
C

+4XAX
BXCX

AXBX
C − 6XAXBX

BXAX
CXC

]

.

Furthermore, straightforward algebra shows that the second term in eq. (A.21) precisely

cancels the terms in the third and fourth lines of eq. (A.20). So we conclude that the

variation of L4 is completely canceled by varying −V . This expression agrees with the

potential obtained in [1, 2].

It is also interesting to note that V is proportional to the trace of the absolute square

of the X3 expression that appears in δ3Ψ. Specifically,

V =
1

6
tr(N IAN I

A), (A.21)

which is straightforward to verify using eq. (A.19).

Conserved supersymmetry current. The conserved supersymmetry current of the

U(N) × U(N) theory, generalizing the expression given earlier for the U(1) × U(1) theory,

is

QI
µ = tr

(

M I
AγµΨA

)

+ tr
(

M IAγµΨA

)

. (A.22)

Here

M I
A = −ΓI

ABγ ·DXB +N I
A (A.23)

and

M IA = Γ̃IABγ ·DXB +N IA (A.24)

are quantities that appear in the supersymmetry variations of the spinor fields Ψ̄A and Ψ̄A,

respectively. The quantity N I
A and its adjoint N IA were defined in eqs. (3.20) and (3.21).

The verification that this current is conserved as a consequence of the equations of motion is

rather tedious. In any case, it would be redundant, since it is equivalent to the verification

of the supersymmetry of the action, which we have just carried out.

Conformal supersymmetry. In the U(1) × U(1) case, we found that the conformal

supersymmetries can be described by replacing εI in the Poincaré supersymmetries by

γ · x ηI and by adding an additional term to the spinor field transformations

δ′ΨA = ΓI
ABX

BηI (A.25)

and its adjoint. Let us now verify that the same rule continues to work for N > 1. Most

terms cancel as a consequence of the Poincaré supersymmetry. The remaining ones that
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need to cancel separately are those that arise from the derivative in iΨ̄Aγ · DδΨA acting

on the explicit xµ in the ηI transformation. This gives

iΨ̄A

[

Γ̃IAB(γ ·DXB + 3XCX
CXB − 3XBX

CXC) − 6Γ̃IBCXBX
AXC

]

ηI . (A.26)

The first term in this expression is canceled by the δ′ΨA variation of the spinor kinetic

term. The remaining terms need to cancel against the δ′Ψ variation of L4. The relevant

terms that arise in this way are

2iεABCDtr(δ′Ψ̄AXBΨCXD) + itr(δ′Ψ̄AΨAXBX
B) − itr(Ψ̄Aδ

′ΨAXBXB)

2itr(Ψ̄Aδ
′ΨBXAXB) − 2itr(δ′Ψ̄BΨAXBX

A).

By manipulations similar to those described previously, the first term in this expression

can be recast in the form

2iΓ̃IBCtr(Ψ̄AXBX
AXC + Ψ̄BXCX

AXA + Ψ̄CXAX
AXB)ηI . (A.27)

Combining this with the other four terms leaves

iΨ̄A

[

Γ̃IAB(−3XCX
CXB + 3XBX

CXC) + 6Γ̃IBCXBX
AXC

]

ηI . (A.28)

This provides the desired cancellation, which proves that the theory has conformal super-

symmetry.

Taken together with the N = 6 Poincaré supersymmetry, the conformal supersymme-

try implies that the theory has the full OSp(6|4) superconformal symmetry. Even though

this result is necessary for a dual AdS interpretation, it was not at all obvious that this

symmetry would hold. After all, it is not a logical consequence of the other symmetries

that have been verified.

Accordingly, the conserved conformal supersymmetry currents in the U(N) × U(N)

theory are given by

SI
µ = γ · xQI

µ − ΓI
ABtr

(

XBγµΨA
)

+ Γ̃IABtr
(

XBγµΨA

)

. (A.29)

As a check on our analysis, let us compute the divergence. The DXB terms cancel leaving

∂µSI
µ = tr

(

3N I
AΨA + 3N IAΨA − ΓI

ABX
Bγ ·DΨA + Γ̃IABXBγ ·DΨA

)

, (A.30)

where N I
A and N IA are as before. Using the spinor field equations of motion (A.15)

and (A.16) to eliminate γ ·DΨA and γ ·DΨA, the terms in ∂µSI
µ that involve ΨA are

3tr
(

N I
AΨA

)

+ 2εACDE Γ̃IABtr
(

XBX
CΨDXE

)

−ΓI
ABtr

(

XB [−XCX
CΨA + ΨAXCXC − 2ΨCXAXC + 2XCX

AΨC ]
)

.

A short calculation, similar to previous ones, shows that this vanishes.
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